Additive models for quantile regression: Model selection and confidence bandaids
نویسندگان
چکیده
Additive models for conditional quantile functions provide an attractive framework for nonparametric regression applications focused on features of the response beyond its central tendency. Total variation roughness penalities can be used to control the smoothness of the additive components much as squared Sobelev penalties are used for classical L2 smoothing splines. We describe a general approach to estimation and inference for additive models of this type. We focus attention primarily on selection of smoothing parameters and on the construction of confidence bands for the nonparametric components. Both pointwise and uniform confidence bands are introduced; the uniform bands are based on the Hotelling [Amer. J. Math. 61 (1939) 440–460] tube approach. Some simulation evidence is presented to evaluate finite sample performance and the methods are also illustrated with an application to modeling childhood malnutrition in India.
منابع مشابه
Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
Ordinary linear and generalized linear regression models relate the mean of a response variable to a linear combination of covariate effects and, as a consequence, focus on average properties of the response. Analyzing childhood malnutrition in developing or transition countries based on such a regression model implies that the estimated effects describe the average nutritional status. However,...
متن کاملAdditive Models for Quantile Regression
We describe some recent development of nonparametric methods for estimating conditional quantile functions using additive models with total variation roughness penalties. We focus attention primarily on selection of smoothing parameters and on the con
متن کاملEmpirical Likelihood for Nonparametric Additive Models
Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes empirical likelihood-based inference methods for unknown functions in three types of nonparametric a...
متن کاملAdditive Models for Quantile Regression: Some New Methods for R
This brief report describes some recent developments of the R quantreg package to incorporate methods for additive models. The methods are illustrated with an application to modeling childhood malnutrition in India. Models with additive nonparametric effects offer a valuable dimension reduction device throughout applied statistics. In this paper we describe some recent developments of additive ...
متن کاملVariable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010